本文摘要
本文通過利用Masterziser 3000和Morphologi-4 對一種鈉離子電池正極材料的進行粒度粒形測試,證明典型的鈉離子電池正極材料更適合用干法分散或乙醇分散,揭示出與鋰離子正極材料在分散劑的選擇上的差異。
實驗背景
粒度分布是電池原材料的一項重要檢測項目,它影響著正極材料的涂層質量,繼而影響電池的性能。長期以來鋰離子材料作為主要的正極材料,廣泛應用于電極生產,例如磷酸鐵鋰,三元鋰電極材料。通常根據(jù)材料表面是否改性,上述材料大多使用水作為分散介質進行樣品分散,進而準確分析樣品的粒度和粒徑分布。
隨著技術的發(fā)展,越來越多的廠家開始研究鈉離子材料作為正極材料,并對該新材料也提出了粒度測試的要求,原鋰電正極材料的分析方法是否可以復制呢?我們帶著這樣的疑問對鈉電正極材料展開測試。
實驗過程及結論
待測試的鈉離子電池正極材料樣品為黑色粉末,流動性較好,與常規(guī)三元材料類似。按照過去的分散方法,可以直接用水分散,超聲對結果影響很小,穩(wěn)定性好,單峰且分布較窄。我們先按照鋰電材料的分散方法進行測試。
該鈉電正極材料加入水中,隨著攪拌,可以看到粒徑分布從窄峰逐漸變寬,小顆粒迅速增加,遮光度急劇升高,結果穩(wěn)定性極差,且溶液顏色從黑色變成了紅褐色。
Figure 1 鈉離子電池正極材料樣品在水中的Mastersizer30000粒徑測試結果
這些跡象表明,該種鈉離子電池正極材料與水很可能發(fā)生了反應,將干粉樣品、水中變紅樣品分別在Morphologi4粒形分析儀的顯微鏡下觀察,可以發(fā)現(xiàn)明顯差別。結果如下:
Figure 2-1 鈉離子電池正極材料樣品使用干法分散后的顆粒圖像(圖片來自M4)
Figure 2-2 鈉離子電池正極材料樣品使用水分散后的顆粒圖像(來自M4)
圖像法證實了我們的想法:這種鈉離子電池正極材料在水中的粒度是不穩(wěn)定的,要準確測量其顆粒粒度,需要更換分散方法或者分散介質。我們首先選擇了乙醇作為分散介質進行實驗。
實驗選用Hydro SM進樣器,取少量具備代表性樣品;根據(jù)樣品團聚情況選擇外置超聲分散。
在乙醇中,樣品為雙峰分布,粒徑很穩(wěn)定,即使用超聲分散,小顆粒組分稍稍變多,整體與圖像觀察非常吻合。使用Mastersizer 3000分析粒度分布圖如下:
Figure 3 鈉離子電池正極材料樣品在乙醇中不同超聲時間的Mastersizer 3000 粒徑測試結果
Figure 4 鈉離子電池正極材料樣品在乙醇中分散的顆粒圖像(來自M4)
之后,實驗選擇干法分散再次測試。根據(jù)樣品團聚情況選擇文丘里管,測試結果重現(xiàn)性也很不錯,隨著壓力的增加,小顆粒的含量逐漸上升,這表明摩擦力對樣品分散力更為有效。為了和濕法進行對比,我們選擇與濕法分散最為相近的1bar分散壓力。干法分散 Mastersizer 3000的檢測結果如下:
Figure 5 鈉離子電池正極材料樣品用干法在不同壓力下Mastersizer3000粒徑測試結果以及與乙醇中測試對比
結論
典型的鈉電正極材料與常規(guī)的鋰電正極材料在水中的分散情況差異很大,會隨著攪拌或超聲反應得到大量的小顆粒,無法得到穩(wěn)定粒徑結果。更換為乙醇或者干法分散,樣品結果重復性和重現(xiàn)性都非常優(yōu)秀。
>>> 關于馬爾文帕納科
馬爾文帕納科的使命是通過對材料進行化學、物性和結構分析,打造出客戶導向型創(chuàng)新解決方案和服務,從而提高效率和產生可觀的經濟效益。通過利用包括人工智能和預測分析在內的最近技術發(fā)展,我們能夠逐步實現(xiàn)這一目標。這將讓各個行業(yè)和組織的科學家和工程師可以解決一系列難題,如提高生產率、開發(fā)更高質量的產品,并縮短產品上市時間。